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1. Let f : [0, 1] → R be a bounded function, and suppose the lower integral of f on [0, 1] is positive.
Prove that there exists an interval [r1, r2] ⊆ [0, 1], r1 6= r2, such that f(x) > 0 for all x in [r1, r2].

Solution: If the lower integral of f is positive then the Riemann integral of f is positive. Suppose

f = 0 on [0, 1] implies that
∫ 1

0
f = 0. Therefore

∫ 1

0
f is positive implies that f is positive on some

interval [r1, r2] ⊆ [0, 1].

�

2. Let f be a Riemann integrable function on [a, b], a < b, and let F (x) =
∫ x

a
f(t)dt, x ∈ [a, b]. Prove

that F is continuous on [a,b].

Solution: We can find the proof in the book ’Elementary Analysis’ by Kenneth A. Ross. Theorem
34.3, Page - 294. �

3. Find the limit (if exists): lim
(x,y)→(0,0)

x2y
x2+y2

Solution: Let h(x, y) = x2y
x2+y2 for (x, y) ∈ R2 \ 0. Let ε > 0 be given, choose δ > 0 such that δ = ε.

Whenever 0 < (x, y) ∈ R2 with |(x, y)| := max{|x|, |y|} < ε, we have

|h(x, y)− (0, 0)| = |h(x, y)| = | x2y

x2 + y2
| ≤ x2|y|

x2
= |y| < δ < ε.

Thus lim
(x,y)→(0,0)

x2y
x2+y2 = (0, 0). �

4. Let f : Rm → R be a C∞-function, and let

g(x1, ..., xn) = f(ex1 , ..., exn),

for all (x1, ..., xn) ∈ Rn. Suppose that

n∑
i=1

(x2i
∂2f

∂x2i
+ xi

∂f

∂xi
) = 0.

Compute
n∑

i=1

∂2g
∂x2

i
.

Solution: Given that
g(x1, ..., xn) = f(ex1 , ..., exn).

Compute ∂g
∂xi

,

∂g

∂xi
=

∂f

∂exi
exi .
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Compute ∂2g
∂x2

i
,

∂2g

∂x2i
=

∂f

∂exi
exi + exi2

∂2f

∂exi2
.

Using the assumption
n∑

i=1

(x2i
∂2f
∂x2

i
+ xi

∂f
∂xi

) = 0 and by above computation
n∑

i=1

∂2g
∂x2

i
= 0.

�

5. Which of the following statements are true, and which are false? Justify your answer.

(i). Br(a) = {x ∈ X : d(x, a) ≤ r}.
(ii). If every subset of X is compact, then X is a finite set.

(iii). Interior of a connected subset of X is connected.

Solution: (i). It is not necessarily true that the closure of the open ball Br(a) is equal to the
closed ball of the same radius r centred at the same point a. For example, take X to be any set
and define a metric

d(x, y) =

{
0 if and only if x = y

1 otherwise

The open unit ball of radius 1 around any point a is a singleton set {x}. Its closure is also the
singleton set. However the closed unit ball of radius 1 is everything.

(ii). Since metric space is Hausdroff, (ii) is true. If X is compact, every subset has a limit point.
Suppose X is not finite then there exists an infinite subset A. We can choose a limit point x of A,
take it away from A if it is in A and denote the new set by A′. It is still infinite. By assumption
A′ is compact, since X is Hausdroff, A′ must be closed, but there exists a limit point of A′ that is
not in A′. This is a contradiction.

(iii). This is need not be true. If X ⊂ R2 is the union of two closed disks of radius 1, one with
centre at (1, 0) and another with centre at (−1, 0) then X is connected but its interior is not. �

6. Let X be a compact metric space, and let f : X → X be a function. suppose that

d(f(x), f(y)) < d(x, y)

for all x 6= y. Prove that f has a unique fixed point.

Solution: We can find the proof in the book ’Topology of Metric Spaces’ by S. Kumaresan.
Theorem 6.4.5, Page - 143. �

7. Let X be a complete countable metric space. Prove that there exists an element x ∈ X such that
{x} is open.

Solution: To prove that there exists an element x ∈ X such that {x} is open, it is enough to prove
that X has a isolated point. Suppose X is a complete metric space with no isolated points. Since
X is countable and fix an enumeration X = {xn : n ∈ N}. For each x ∈ X, let Ox := X \ {x}. By
our assumption Oxn

is dense in X. Using Baire category theorem, we have ∩n∈NOxn
is dense in

(X, d). But this is a contradiction, because ∩n∈NOxn is empty. �
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8. Determine the nature of the critical points of f(x, y) = 2x3 − 6xy + y2 + 4y, (x, y) ∈ R2.

Solution: We will first to get all the first and second order derivatives

fx = 6x2 − 6y, fy = −6x+ 2y + 4, fxx = 6x, fyy = 2, fxy = −6.

We can solve the first equation for y as

6x2 − 6y = 0⇒ y = x2.

Plugging this into the second equation gives,

x2 − 3x+ 4 = 0.

From this we can see that we must have x = 1 or x = 2. Now use the fact that y = x2

x = 1, y = 1⇒ (1, 1)

x = 2, y = 4⇒ (2, 4)

So we get two critical points. All we need to do now is classify them. To do this we will need D.
Here is the general formula for D.

D(x, y) = fxxfyy − f2xy = 6x2− (−6)2 = 12x− 36.

To classify the critical points all that we need to do is plug the critical points and use the fact above
to classify them.

D(1, 1) = 12− 36 = −24 < 0

So, for (1, 1), D is negative and so this must be a saddle point.

D(2, 4) = 24− 36 = −12 < 0

For (2, 4), D is negative so this is also a saddle point.

�

9. Let f : R2 → R be a function. Suppose that f is a differentiable at (0, 0) and

lim
x→0

f(x, x)− f(x,−x)

x
= 1.

Compute ∂f
∂y (0, 0).

Solution:

lim
x→0

f(x, x)− f(x,−x)

x
= 1

lim
x→0

f(x, x)− f(0, 0)

x
− lim

x→0

f(x,−x)− f(0, 0)

x
= 1

lim
x→0

f(x(1, 1))− f(0, 0)

x
− lim

x→0

f(x(1,−1))− f(0, 0)

x
= 1

Using the definition of derational derivative, we have

∇f |(0,0)(1, 1)−∇f |(0,0)(1,−1) = 1
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∇f |(0,0)(0, 2) = 1

2∇f |(0,0)(0, 1) = 1

∇f |(0,0)(0, 1) =
1

2

∂f

∂y
(0, 0) =

1

2
.

�
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